Simple 3d crosstalk measurement charts

I recently bought a new television capable of passive 3d. When I was trying to select the "best" television I found out there wasn't a proper easy way to measure 3d crosstalk that is the most important feature of 3d technology. It's equally important as stereo crosstalk in audio signals but nowadays most audio signals are so high fidelity that audio crosstalk is basically non-existent.

But 3d technology still has to evolve, still too much crosstalk and to push the technology forward the consumers have to know which technology to buy and which not. One way of doing that is figuring how to measure 3d crosstalk preferable without any meters but visually and doing it so that results are interchangeable between different televisions settings and 3d technologies.

One of important settings will be gamma curve. Some televisions have gamma curve 2.2, some 2.4, others something else. The gamma curve defines how the television shows signals color levels as luminance levels in screen. If gamma curve is 1.0, zero signal shows zero light, 1 signal shows full light and 1/2 signal shows half light. But normal gamma curves used (2.2, 2.3, 2.4 ) means that 1/2 signal is not shown as half light but less than that.


If you don't know what gamma curve your television is set to, it probably is 2.2.

With 3d glasses, left eye sees only picture intended for left eye and vice versa. But technology is not perfect and left eye sees also a little bit of picture intended for the right eye. That is 3d crosstalk and in movies it shows as ghost images.

Static contrast ratio is the ratio between the whitest white and blackest black in static picture. If you have OLED television, then it's contrast ratio is virtually infinite. Others have to live with little imperfection and for instance my televisions static contrast ratio should be about 1:3000.  The 3d crosstalk can also be presented as a ratio between the "right" picture and the "wrong" picture.

How test patterns work

 

In my test patterns I have divided three main colors to separate test charts and both eyes have their own test charts so there are six different test charts. There is also test charts for white color but problem with white test chart is that your television might have for instance more crosstalk for instance blue color so you would have to try to match blue color with white color and it's difficult to do without a meter. It it easier to measure each color separately.

The test charts have the "right" picture that is different patches starting from black patch and moving to patches with more luminance. The "wrong" picture is full white stripes. When you are testing with left-eye-pictures, you put a piece of paper or your hand in front of your right eye to block it and and only your left eye sees the picture through the 3d glasses. Then you see the "right" picture as you should and the "wrong" picture as faint but you can still see the with stripes.


Selecting the right patch


Now you have to select which of the "right" pictures patches equals the "wrong" pictures faint white stripe in luminosity. The faint white stripe is the crosstalk and you are trying to measure it. If it is too difficult to find the correct patch, you can also try to find the first and last patch that look similar as the white patch. Then take the luminosity values from the table below and the right patch is the one that has luminosity (first patch luminosity + last patch luminosity )/2 eg. the average of the two.



Luminosity for patches:


Patch 2,2 2,3 2,4
0 0 0 0
1 5,07705190066176E-006 2,91714209990719E-006 1,67611405153091E-006
2 0,000023328 1,4365692796936E-005 8,84658300141058E-006
3 5,69217657121931E-005 3,65036650558521E-005 2,34096315502103E-005
4 0,0001071874 0,000070745 4,66925450146811E-005
5 0,000175124 0,0001181921 7,97685278983462E-005
6 0,0002615438 0,0001797651 0,0001235568
7 0,0003671363 0,0002562613 0,0001788706
8 0,0004925038 0,0003483891 0,0002464447
9 0,0006381828 0,0004567887 0,0003269532
10 0,0008046585 0,0005820464 0,0004210208
11 0,0009923743 0,0007247042 0,0005292319
12 0,0012017395 0,0008852674 0,0006521366
13 0,0014331346 0,0010642099 0,0007902557
14 0,0016869153 0,0012619788 0,0009440845
15 0,0019634162 0,0014789976 0,0011140959
16 0,0022629532 0,0017156692 0,0013007431
17 0,0025858256 0,0019723778 0,0015044612
18 0,0029323183 0,0022494914 0,0017256693
19 0,003302703 0,0025473632 0,0019647722
20 0,0036972396 0,0028663325 0,0022221612
21 0,0041161771 0,0032067268 0,0024982154
22 0,0045597549 0,003568862 0,0027933027
23 0,0050282035 0,0039530436 0,0031077808
24 0,0055217449 0,0043595678 0,0034419975
25 0,0060405937 0,0047887218 0,0037962918
26 0,0065849574 0,0052407843 0,0041709944
27 0,007155037 0,0057160266 0,0045664279
28 0,0077510274 0,0062147127 0,0049829077
29 0,0083731177 0,0067370998 0,0054207423
30 0,0090214919 0,0072834387 0,0058802336
31 0,0096963287 0,0078539744 0,0063616773
32 0,0103978023 0,008448946 0,0068653632
33 0,0111260824 0,0090685875 0,0073915756
34 0,0118813344 0,0097131276 0,0079405936
35 0,01266372 0,0103827904 0,0085126911
36 0,0134733969 0,0110777953 0,0091081373
37 0,0143105194 0,0117983575 0,0097271968
38 0,0151752382 0,0125446878 0,01037013
39 0,0160677009 0,0133169933 0,0110371927
40 0,0169880521 0,0141154772 0,011728637
41 0,0179364333 0,0149403391 0,0124447112
42 0,0189129834 0,0157917752 0,0131856597
43 0,0199178384 0,0166699782 0,0139517235
44 0,0209511319 0,0175751379 0,01474314
45 0,0220129949 0,0185074407 0,0155601436
46 0,0231035562 0,0194670703 0,0164029652
47 0,0242229421 0,0204542075 0,0172718328
48 0,0253712769 0,0214690304 0,0181669716
49 0,0265486828 0,0225117143 0,0190886036
50 0,02775528 0,0235824322 0,0200369483
51 0,0289911865 0,0246813545 0,0210122224
52 0,0302565189 0,0258086492 0,0220146402
53 0,0315513914 0,0269644822 0,0230444132
54 0,0328759169 0,028149017 0,0241017507
55 0,0342302066 0,0293624149 0,0251868596
56 0,0356143697 0,0306048353 0,0262999445
57 0,0370285142 0,0318764356 0,0274412077
58 0,0384727463 0,0331773711 0,0286108494
59 0,039947171 0,0345077952 0,0298090678
60 0,0414518916 0,0358678596 0,0310360589
61 0,0429870102 0,0372577141 0,0322920169
62 0,0445526273 0,0386775068 0,0335771338
63 0,0461488424 0,0401273841 0,0348916
64 0,0477757536 0,0416074907 0,036235604
65 0,0494334576 0,0431179699 0,0376093323
66 0,0511220501 0,0446589632 0,0390129699
67 0,0528416255 0,0462306108 0,0404467
68 0,0545922773 0,0478330511 0,0419107041
69 0,0563740976 0,0494664215 0,0434051623
70 0,0581871775 0,0511308576 0,0449302529
71 0,0600316071 0,0528264938 0,0464861526
72 0,0619074756 0,0545534633 0,0480730369
73 0,0638148709 0,0563118977 0,0496910795
74 0,0657538803 0,0581019275 0,0513404528
75 0,0677245897 0,059923682 0,0530213278
76 0,0697270844 0,0617772892 0,054733874
77 0,0717614488 0,0636628758 0,0564782599
78 0,0738277663 0,0655805676 0,0582546522
79 0,0759261195 0,0675304891 0,0600632165
80 0,07805659 0,0695127636 0,0619041174


Little theory about 3d crosstalk


When you are viewing picture for your left eye, the patch stripe consists of two pictures, the left eye patch and the black portion of the right side picture.The black is not completely black and it depends of televisions contrast ratio. In calculations we normalize the luminance that complete black is 0 and full white is 1. There is no complete black ( unless you have OLED) so in our calculations black is the contrast ratio CR. If my tv has CR 1:3000 then luminance of black will be 1/3000.

We'll call 3d crosstalk contrast as 3dCR.

The patch luminance of "right" picture will be ( CR + power(patch,gamma) *(1-CR)) because the patch number has to be transformed to linear values through gamma power function and then it has to fit between values CR and 1. The luminance of "wrong" picture will be black multilpied by 3dCR.
Then the luminance of the patch you selected is:
( CR + power(patch,gamma) *(1-CR)) + CR*3dCR

The white stripe ( the "wrong" picture ) consists of black of "right" picture and white of "wrong" picture multiplied by 3dCR.
Then the white stripe luminance is: CR + 1 * 3dCR

Because you selected the patch that equals the white stripe:
( CR + power(patch,gamma) *(1-CR)) + CR*3dCR = CR + 1 * 3dCR

I'll then solve 3dCR:
( CR + power(patch,gamma) *(1-CR)) + CR*3dCR = CR + 1 * 3dCR
CR + power(patch,gamma) *(1-CR) + CR*3dCR = CR + 1 * 3dCR
power(patch,gamma) *(1-CR) + CR*3dCR = 1 * 3dCR
power(patch,gamma) *(1-CR) = 1 * 3dCR  - CR*3dCR
power(patch,gamma) *(1-CR) = 3dCR * (1 - CR)
power(patch,gamma) = 3dCR
The equation seemed difficult at first but in the end only the patch luminance is needed for 3d contrast ratio!

I've precalculated 3d contrast ratio ( = 1/3dCR) values for different gamma values:

Patch 2,2 2,3 2,4
0 infinite infinite infinite
1 196 965 342 801 596 618
2 42 867 69 610 113 038
3 17 568 27 395 42 717
4 9 329 14 135 21 417
5 5 710 8 461 12 536
6 3 823 5 563 8 093
7 2 724 3 902 5 591
8 2 030 2 870 4 058
9 1 567 2 189 3 059
10 1 243 1 718 2 375
11 1 008 1 380 1 890
12 832 1 130 1 533
13 698 940 1 265
14 593 792 1 059
15 509 676 898
16 442 583 769
17 387 507 665
18 341 445 579
19 303 393 509
20 270 349 450
21 243 312 400
22 219 280 358
23 199 253 322
24 181 229 291
25 166 209 263
26 152 191 240
27 140 175 219
28 129 161 201
29 119 148 184
30 111 137 170
31 103 127 157
32 96 118 146
33 90 110 135
34 84 103 126
35 79 96 117
36 74 90 110
37 70 85 103
38 66 80 96
39 62 75 91
40 59 71 85
41 56 67 80
42 53 63 76
43 50 60 72
44 48 57 68
45 45 54 64
46 43 51 61
47 41 49 58
48 39 47 55
49 38 44 52
50 36 42 50
51 34 41 48
52 33 39 45
53 32 37 43
54 30 36 41
55 29 34 40
56 28 33 38
57 27 31 36
58 26 30 35
59 25 29 34
60 24 28 32
61 23 27 31
62 22 26 30
63 22 25 29
64 21 24 28
65 20 23 27
66 20 22 26
67 19 22 25
68 18 21 24
69 18 20 23
70 17 20 22
71 17 19 22
72 16 18 21
73 16 18 20
74 15 17 19
75 15 17 19
76 14 16 18
77 14 16 18
78 14 15 17
79 13 15 17
80 13 14 16

So if I have selected patch number 37 for blue color and my gamma is 2.4, the 3d contrast ratio for blue is 1:103 which means less that 1% of blue crosstalk. The table also shows why knowing your gamma setting is important. 

You can calculate your white 3d contrast with this formula:

The white contrast =  (
( Red contrast * 0,212655 ) +
( Green contrast *
0,715158 ) +
( Blue contrast * 0,072187 )
)
The white contrast =  (
( Red contrast * 0,212655 ) +
( Green contrast * 0,715158 ) +
( Blue contrast * 0,072187 )
)

The test pictures with 60 patches:







 And the white ones just for curiosity:


And the additional test pictures with 80 patches:








Comments